Friday, July 5, 2013

SF6 gas & advantages

SF6 Advantages

 

The electric power industry has been using Sulfur Hexafluoride (SF6) gas as a dielectric and

insulating material for many years. Its popularity is mainly due to its unique physical and electrical

properties including:

1) Dielectric strength twice that of air.

2) Nontoxic, nonflammable and noncorrosive.

3) Chemically stable with high breakdown strength. SF6 molecules provide excellent arc extinction

during electrical operations which minimizes contact wear and maintenance.

4) Excellent thermal conductivity. High heat transfer permits lower operating temperatures.

5) Readily available in many commercial locations.

For distribution voltage switchgear, SF6 provides these important advantages:

1) Size reduction

2) Weight reduction

3) Reliable operation

4) Ease of installation

5) Ease of handling

6) Ease and reduction of maintenance

 

Common Applications

Electrical uses include high voltage circuit breakers, high voltage transformers, distribution voltage

switchgear, gas insulated power substations, gas insulated transmission lines, radar equipment, linear

particle accelerators and generators.

Approximately 80% of the annual consumption of SF6 is used for gas insulated substation (GlS)

equipment and medium voltage switchgear including circuit breakers and load break switches. Of the

80%, medium voltage switchgear accounts for approximately 10%. In both electrical applications, the equipment is designed to contain the gas in sealed pressure systems which are assembled, filled

and tested in a controlled environment.

Nonelectrical uses include molten magnesium and aluminum protection and purification, leak

detection, tracer gas studies, propellants, insulating windows, shock absorbers, lasers and in the

electronics industry as a plasma etchant gas. The other 20% of the annual consumption of SF6 is

used in these applications which typically require release of the gas into the atmosphere.

Load shedding (rolling blackout)

Load shedding is an intentionally engineered electrical power shutdown where electricity delivery is stopped for non-overlapping periods of time over different parts of the distribution region. Rolling blackouts are a last-resort measure used by an electric utility company to avoid a total blackout of the power system. They are a type of demand response for a situation where the demand for electricity exceeds the power supply capability of the network. Rolling blackouts may be localised to a specific part of the electricity network or may be more widespread and affect entire countries and continents. Rolling blackouts generally result from two causes: insufficient generation capacity or inadequate transmission infrastructure to deliver sufficient power to the area where it is needed.

Rolling blackouts are a common or even a normal daily event in many developing countries where electricity generation capacity is underfunded or infrastructure is poorly managed. Rolling blackouts in developed countries are rare because demand is accurately forecasted, adequate infrastructure investment is scheduled and networks are well managed; such events are considered an unacceptable failure of planning and can cause significant political damage to responsible governments. In well managed under-capacity systems blackouts are scheduled in advance and advertised to allow people to work around them but in most cases they happen without warning, typically whenever the transmission frequency falls below the 'safe' limit.

Residual-current device

RCDs are designed to disconnect the circuit if there is a leakage current. By detecting small leakage currents (typically 5–30 milliamperes) and disconnecting quickly enough (<30 ms), they may prevent electrocution. There are also RCDs with intentionally slower responses and lower sensitivities, designed to protect equipment or avoid starting electrical fires, but not disconnect unnecessarily for equipment which has greater leakage currents in normal operation. To prevent electrocution, RCDs should operate within 25-40 milliseconds at leakage currents (through a person) of 30 milliamperes, before electric shock can drive the heart into ventricular fibrillation, the most common cause of death through electric shock. By contrast, conventional circuit breakers or fuses only break the circuit when the total current is excessive (which may be thousands of times the leakage current an RCD responds to). A small leakage current, such as through a person, can be a very serious fault, but would not cause the total current to become high enough for a fuse or circuit breaker to break the circuit, let alone do so fast enough to save a life.

RCDs operate by measuring the current balance between two conductors using a differential current transformer. This measures the difference between the current flowing through the live conductor and that returning through the neutral conductor. If these do not sum to zero, there is a leakage of current to somewhere else (to earth/ground, or to another circuit), and the device will open its contacts.

Residual current detection is complementary to over-current detection. Residual current detection cannot provide protection for overload or short-circuit currents, except for the special case of a short circuit from live to ground (not live to neutral).

Animated 3-phase RCD schematic.

 

For a RCD used with three-phase power, all live conductors and the neutral must pass through the current transformer.

Thursday, July 4, 2013

FACTORS GOVERNING THE CURRENT RATING

The current rating of a cable or wire indicates the current capacity that the wire or cable can safely carry continuously. If this limit, or current rating, is exceeded for a length of time, the heat generated may burn the insulation. The current rating of a wire is used to determine what size is needed for a given load, or current drain. The factors that determine the current rating of a wire are the conductor size, the location of the wire in a circuit, the type of insulation, and the safe current rating. Another factor that will be discussed later in this chapter is the material the wire is made of. As you have already seen, these factors also affect the resistance in ohms of a wire-carrying current.

CONDUCTOR SIZE

An increase in the diameter, or cross section, of a wire conductor decreases its resistance and increases its capacity to carry current. An increase in the specific resistance of a conductor increases its resistance and decreases its capacity to carry current.

WIRE LOCATION

The location of a wire in a circuit determines the temperature under which it operates. A wire may be located in a conduit or laced with other wires in a cable. Because it is confined, the wire operates at a higher temperature than if it were open to the free air. The higher the temperature under which a wire is operating, the greater will be its resistance. Its capacity to carry current is also lowered. Note that, in each case, the resistance of a wire determines its current-carrying capacity. The greater the resistance, the more power it dissipates in the form of heat energy. Conductors may also be installed in locations where the ambient (surrounding) temperature is relatively high. When this is the case, the heat generated by external sources is an important part of the total conductor heating. This heating factor will be explained further when we discuss temperature coefficient. We must understand how external heating influences how much current a conductor can carry. Each case has its own specific limitations. The maximum allowable operating temperature of insulated conductors is specified in tables. It varies with the type of conductor insulation being used.

INSULATION

The insulation of a wire does not affect the resistance of the wire. Resistance does, however, determine how much heat is needed to burn the insulation. As current flows through an insulated conductor, the limit of current that the conductor can withstand depends on how hot the conductor can get before it burns the insulation. Different types of insulation will burn at different temperatures. Therefore, the type of insulation used is the third factor that determines the current rating of a conductor

Types of Hydropower Turbines

There are two main types of hydro turbines: impulse and reaction. The type of hydropower turbine selected for a project is based on the height of standing water—referred to as "head"—and the flow, or volume of water, at the site. Other deciding factors include how deep the turbine must be set, efficiency, and cost.

Terms used on this page are defined in the glossary.

Impulse Turbine

The impulse turbine generally uses the velocity of the water to move the runner and discharges to atmospheric pressure. The water stream hits each bucket on the runner. There is no suction on the down side of the turbine, and the water flows out the bottom of the turbine housing after hitting the runner. An impulse turbine is generally suitable for high head, low flow applications.

Pelton hydropower turbine
Credit: GE Energy

·         Pelton

A pelton wheel has one or more free jets discharging water into an aerated space and impinging on the buckets of a runner. Draft tubes are not required for impulse turbine since the runner must be located above the maximum tailwater to permit operation at atmospheric pressure.

A Turgo Wheel is a variation on the Pelton and is made exclusively by Gilkes in England. The Turgo runner is a cast wheel whose shape generally resembles a fan blade that is closed on the outer edges. The water stream is applied on one side, goes across the blades and exits on the other side.

·         Cross-Flow

A cross-flow turbine is drum-shaped and uses an elongated, rectangular-section nozzle directed against curved vanes on a cylindrically shaped runner. It resembles a "squirrel cage" blower. The cross-flow turbine allows the water to flow through the blades twice. The first pass is when the water flows from the outside of the blades to the inside; the second pass is from the inside back out. A guide vane at the entrance to the turbine directs the flow to a limited portion of the runner. The cross-flow was developed to accommodate larger water flows and lower heads than the Pelton.

Reaction Turbine

A reaction turbine develops power from the combined action of pressure and moving water. The runner is placed directly in the water stream flowing over the blades rather than striking each individually. Reaction turbines are generally used for sites with lower head and higher flows than compared with the impulse turbines.

Propeller hydropower turbine
Credit: GE Energy

·         Propeller

A propeller turbine generally has a runner with three to six blades in which the water contacts all of the blades constantly. Picture a boat propeller running in a pipe. Through the pipe, the pressure is constant; if it isn't, the runner would be out of balance. The pitch of the blades may be fixed or adjustable. The major components besides the runner are a scroll case, wicket gates, and a draft tube. There are several different types of propeller turbines:


Bulb hydropower turbine
Credit: GE Energy

·         Bulb turbine

The turbine and generator are a sealed unit placed directly in the water stream.

·         Straflo

The generator is attached directly to the perimeter of the turbine.

·         Tube turbine

The penstock bends just before or after the runner, allowing a straight line connection to the generator.

·         Kaplan

Kaplan hydropower turbine
Credit: GE Energy

Both the blades and the wicket gates are adjustable, allowing for a wider range of operation.

·         Francis

Francis hydropower turbine
Credit: GE Energy

A Francis turbine has a runner with fixed buckets (vanes), usually nine or more. Water is introduced just above the runner and all around it and then falls through, causing it to spin. Besides the runner, the other major components are the scroll case, wicket gates, and draft tube.

·         Kinetic

Kinetic energy turbines, also called free-flow turbines, generate electricity from the kinetic energy present in flowing water rather than the potential energy from the head. The systems may operate in rivers, man-made channels, tidal waters, or ocean currents. Kinetic systems utilize the water stream's natural pathway. They do not require the diversion of water through manmade channels, riverbeds, or pipes, although they might have applications in such conduits. Kinetic systems do not require large civil works; however, they can use existing structures such as bridges, tailraces and channels.

 

Busbars And Their Uses

Used in electrical power distribution, busbars are usually made out of aluminium or copper and they are able to conduct electricity to transmit power from the source of electric power to the load. They are usually supported by insulators and conduct electricity within switchboards, substations or other electric apparatus. Some typical applications of these devices can be to form the interconnectedness of the incoming and outgoing electrical transmission lines and transformers at an electrical substation; supplying huge amounts of amperes to the electrolytic process in an aluminium smelter by using large busbars and also interconnecting generators to the main transformers in a power plant.

 

The size of the busbar determines its application and the amount of current that it can carry safely. They can be tubular, solid or flat depending on the application and to serve different needs. A tubular busbar is hollow and this shape allows it to dissipate heat more efficiently as it has a high surface area. Hollow or flat shaped bus bars are prevalent in high current applications. Also, the hollow section of a busbar is generally stiffer as compared to a solid rod, thus this allows a greater span between busbar support in outdoor switchyards. The smallest cross-sectional area of a busbar can be as little as 10mm2, but electrical substations would make use of busbars with a diameter of more than 50 mm as they carry great amounts of amperes. Aluminium smelters would make use of these large busbars to carry tens of thousands of amperes to the electrochemical cells that produce aluminium from molten salts.

 

As they carry large amount of electricity, it is important to support the busbars with insulation to prevent any accidents from happening whereby someone may accidentally touch the bus bar. Insulation can either support the busbar or completely surround it. They can be prevented from accidental touch by placing the bus bars at an elevated height so it would not be easily accessible or by a metal earth enclosure. Some bus bars such as the earth bus bar can be bolted directly into the housing chassis of their enclosure. This prevents unwanted touch and also saves the bus bar from any damage it may incur when left exposed. There are several other ways that busbars can be connected to one another or the electrical apparatus with which they would be used with such as by bolting, clamping or welding connections. Switchgears, panelboards or busways usually contain the busbars and the electrical supply is split by the distribution boards into different circuits. Busways are a type of busbars that have a protective cover and are long in shape. Also referred to as bus ducts, these devices allow the electricity to branch out to different circuits at any point along its surface; unlike regular busbars that allow branching of the main supply only at one location.

 

The most common types of busbars present in the industry today are rigid busbars, strain busbars and insulated phase busbars. Each of these different types of busbars has different applications and uses. The rigid busbars are used in low, medium or high voltage applications, constructed with aluminium or copper bars and they make use of porcelain to insulate them. As for the strain busbars, they are mostly used in high voltage applications and are usually strung between the metal structures of a substation. They are held in place by suspension-type insulators. Lastly, as for the insulated-phase bus bars, they are used at medium voltage and similar to the rigid bus bars, they are rigid bars that are supported by insulators. These busbars are able to eliminate short circuits between adjacent phases.