Friday, July 5, 2013

Power outage

A power outage (also power cut, blackout, brownout, or power failure) is a short- or long-term loss of the electric power to an area.

There are many causes of power failures in an electricity network. Examples of these causes include faults at power stations, damage to electric transmission lines, substations or other parts of the distribution system, a short circuit, or the overloading of electricity mains.

Power failures are particularly critical at sites where the environment and public safety are at risk. Institutions such as hospitals, sewage treatment plants, mines, and the like will usually have backup power sources such as standby generators, which will automatically start up when electrical power is lost. Other critical systems, such as telecommunications, are also required to have emergency power. Telephone exchange rooms usually have arrays of lead-acid batteries for backup and also a socket for connecting a generator during extended periods of outage.

 

Types of power outage

 

Power outages are categorized into three different phenomena, relating to the duration and effect of the outage:

A transient fault is a momentary (a few seconds) loss of power typically caused by a temporary fault on a power line. Power is automatically restored once the fault is cleared.

A brownout or sag is a drop in voltage in an electrical power supply. The term brownout comes from the dimming experienced by lighting when the voltage sags. Brownouts can cause poor performance of equipment or even incorrect operation.

A blackout refers to the total loss of power to an area and is the most severe form of power outage that can occur. Blackouts which result from or result in power stations tripping are particularly difficult to recover from quickly. Outages may last from a few minutes to a few weeks depending on the nature of the blackout and the configuration of the electrical network.

 

Protecting the power system from outages

 

In power supply networks, the power generation and the electrical load (demand) must be very close to equal every second to avoid overloading of network components, which can severely damage them. Protective relays and fuses are used to automatically detect overloads and to disconnect circuits at risk of damage.

Under certain conditions, a network component shutting down can cause current fluctuations in neighboring segments of the network leading to a cascading failure of a larger section of the network. This may range from a building, to a block, to an entire city, to an entire electrical grid.

Modern power systems are designed to be resistant to this sort of cascading failure, but it may be unavoidable (see below). Moreover, since there is no short-term economic benefit to preventing rare large-scale failures, some observers[who?] have expressed concern that there is a tendency to erode the resilience of the network over time, which is only corrected after a major failure occurs. It has been claimed[who?] that reducing the likelihood of small outages only increases the likelihood of larger ones. In that case, the short-term economic benefit of keeping the individual customer happy increases the likelihood of large-scale blackouts.

0 comments:

Post a Comment