This is one of my favorite topics in engineering systems design (they don’t call me the “Energy Zarr” without reason). In fact, I often rant about waste in solving a problem with brute force. Now… with that said, sometimes a hammer is more effective when dealing with a nail, but in general, what goes in, must come out… and most of what comes out is heat. Take the quintessential LCD display like the 60” version sitting in your living room. That beauty has white LEDs for a back-light so it must be “green” right? Well, did you know that up to 80% of the light emitted by those LEDs is absorbed by the color filters on the LCD glass? It might be “thin” but it is definitely not efficient with the back-light energy. Technologies such as OLED or Sequential Frame LCD (SFLCD) do not use filters. OLEDs are self emitting and draw zero power when off. SFLCD technology still uses a back-light, but they are RGB LEDs. Each color frame (red, green, blue) is switched at such a high speed that the eye integrates the image into the proper colors. Each pixel is now larger and brighter with less power. How much less? Try 80 watts for an SFLCD TV versus 350 watts for the traditional LCD. Energy currently is a limited resource, so innovate where you can to save it. http://www.dailymotion.com/video/x1w0sb3_cessco-fabrication-engineering-ltd_tech
I remember talking with the late Bob Pease about the state of the art in digital techniques for solving complex problems. He politely let me babble for a few minutes and then laughed, “Yep, I solved that same problem 10 years ago with two op-amps”. I wanted to crawl under something, but his office was completely full of every magazine he had ever received… but that’s another story. He was correct – sometimes a straight forward analog solution can not only be the most elegant, but also the most efficient. Sometimes you need the power of a DSP processor when systems are non-linear or the signal processing is not realizable in the analog domain. However sometimes simple analog circuitry can solve the problem. Don’t forget your roots. http://www.youtube.com/watch?v=Ww8_dqmr0bo
This is one of my favorite topics in engineering systems design (they don’t call me the “Energy Zarr” without reason). In fact, I often rant about waste in solving a problem with brute force. Now… with that said, sometimes a hammer is more effective when dealing with a nail, but in general, what goes in, must come out… and most of what comes out is heat. Take the quintessential LCD display like the 60” version sitting in your living room. That beauty has white LEDs for a back-light so it must be “green” right? Well, did you know that up to 80% of the light emitted by those LEDs is absorbed by the color filters on the LCD glass? It might be “thin” but it is definitely not efficient with the back-light energy. Technologies such as OLED or Sequential Frame LCD (SFLCD) do not use filters. OLEDs are self emitting and draw zero power when off. SFLCD technology still uses a back-light, but they are RGB LEDs. Each color frame (red, green, blue) is switched at such a high speed that the eye integrates the image into the proper colors. Each pixel is now larger and brighter with less power. How much less? Try 80 watts for an SFLCD TV versus 350 watts for the traditional LCD. Energy currently is a limited resource, so innovate where you can to save it.
ReplyDeletehttp://www.dailymotion.com/video/x1w0sb3_cessco-fabrication-engineering-ltd_tech
I remember talking with the late Bob Pease about the state of the art in digital techniques for solving complex problems. He politely let me babble for a few minutes and then laughed, “Yep, I solved that same problem 10 years ago with two op-amps”. I wanted to crawl under something, but his office was completely full of every magazine he had ever received… but that’s another story. He was correct – sometimes a straight forward analog solution can not only be the most elegant, but also the most efficient. Sometimes you need the power of a DSP processor when systems are non-linear or the signal processing is not realizable in the analog domain. However sometimes simple analog circuitry can solve the problem. Don’t forget your roots.
ReplyDeletehttp://www.youtube.com/watch?v=Ww8_dqmr0bo